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Semi-Markov process-driven
maintenance scheduling for Tainter
gate system considering multiple
limit states

John Thedy1, Kuo-Wei Liao2 and Yi-Ting Hung3

Abstract
In extended periods of operation, Taiwan’s reservoir electromechanical systems increasingly require substantial mainte-
nance. This research adopts the semi-Markov process, which accommodates non-exponential distribution of state dura-
tions, to formulate optimal maintenance strategies for Tainter gate systems that are noted for their prolonged
dormancy and significant operational uncertainties. The methodology initiates with the estimation of failure probabilities
across four condition states, analyzing deterioration through the Weibull distribution for both general and latent limit
states. The general limit state accounts for time-induced deterioration and effects of dormancy using a Bayesian–Weibull
first-order reliability method, while the latent limit state addresses activation failures. Employing the semi-Markov pro-
cess, an annual transition matrix is computed and combined with failure probabilities to assess the Tainter gates’ system
reliability. To identify the most efficient maintenance schedule, a genetic algorithm is applied, targeting the minimization
of failure probabilities for both limit states below predefined thresholds and cost reduction. Numerical simulations vali-
date the framework’s efficacy, demonstrating its potential to enhance maintenance planning objectivity and decrease
dependence on subjective assessments. The findings highlight the predominance of the general limit state in dictating sys-
tem failure and underscore the risk Tainter gates face during transition from dormancy to activation, emphasizing the
need for thorough monitoring.
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Introduction

In Taiwan, the Water Resources Agency, as the gov-
erning body for water management, has digitized his-
torical maintenance records for numerous reservoirs
and established an information platform that enables
the search and statistical analysis of the distribution of
repair frequencies for various components. Hydraulic
gates and their electromechanical control equipment
are crucial and long-standing facilities within reser-
voirs. Based on the concept of the lifecycle, it is essen-
tial to ensure the safety and functionality of the gates
and their control equipment. Due to prolonged or fre-
quent usage, the hydraulic-gate-related facilities inevi-
tably experience wear and aging, making appropriate
maintenance management strategies vital for extending
the service life of these facilities. Currently, routine
inspection operations are predominantly conducted
through manual visual inspections as a form of

preventative maintenance. To advance to more sophis-
ticated predictive maintenance, concrete, scientifically
based, and quantifiable data are necessary. Manual
inspections, limited by the engineers’ experience,
slightly lack objectivity and do not offer real-time cap-
abilities. To mitigate human errors, the installation of
monitoring instruments has become a common solu-
tion, enhancing the quality of the existing database
with quantifiable data. Moreover, contemporary
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monitoring instruments, often integrated with various
communication technologies such as the Internet of
Thing, can transmit onsite data in real time, reducing
the inconvenience of onsite inspections while maintain-
ing immediacy. Consequently, this study aims to trans-
form monitoring data into scientifically based
information for reliability analysis to identify failure
modes, serving as a foundation for developing mainte-
nance strategies to prevent failure incidents. This pro-
vides real-time information on hydraulic gates and
their electromechanical control equipment, serving as a
reference for maintenance management by agency
personnel.

The Tainter gate, a critical element within water
management frameworks, fulfills a crucial function in
mitigating floods, facilitating irrigation, and generating
hydroelectric power. These radial gates, crafted for
high efficiency and robustness, are adept at handling
significant hydraulic pressures, rendering them excep-
tionally suitable for modulating water flow within
dams and waterways. Through precise regulation of
water discharge, Tainter gates play a vital role in avert-
ing flood situations, securing a reliable water source
for agricultural activities, and sustaining optimal con-
ditions for the generation of energy. Within the context
of Taiwan’s water infrastructure, the Tainter gate
stands out as a pivotal component. Distinguished from
other manufactured equipment, Tainter gates exhibit a
unique operational characteristic: they spend a greater
portion of time in a dormant state relative to their
‘‘active periods.’’ In this study, the ‘‘active period’’
refers to the time when the gate swings up (typically) to
allow water to discharge downstream or when the gate
swings down to dam the upstream pool again.
Nonetheless, the imperative for these systems to remain
operational at all times is underscored by their integral
role in water management systems. Kirubakaran et al.1

delineate four distinct maintenance strategies, as fol-
lows: corrective maintenance (CM) addresses failures
as they occur, optimizing profit margins by reacting to
issues, representing the initial approach in industrial
maintenance. Time-based preventive maintenance
(TM) schedules interventions to avoid unexpected fail-
ures, with its costs planned within the system’s design
life, and has been compared with CM in studies like
those by Stenström et al.2 Condition-based mainte-
nance (CBM) continuously monitors system health to
perform maintenance when specific degradation levels
are reached, often using probabilistic methods for
assessment.3,4 Predictive maintenance anticipates
future system conditions through numerical models to
guide preemptive maintenance,5 integrating a forward-
looking approach to system upkeep.

To ascertain the most appropriate maintenance
strategy for a given system, numerous scholars have

employed the analytical hierarchy process (AHP).6,7

Bevilacqua et al.7 incorporated multiple factors into
their AHP analysis, including safety, the criticality of
machinery, maintenance costs, frequency of failure,
duration of downtime, and operational conditions.
The assignment of maintenance strategies to individual
machines is predicated on their respective AHP scores.
Furthermore, various studies have advocated for the
adoption of hybrid maintenance policies, such as
integrating CBM with opportunistic maintenance
(OM),8–10 or combining TM with OM.11,12 Regarding
the determination of optimal maintenance intervals or
schedules, a plethora of methodologies has been pro-
posed. The predominant approach involves scheduling
based on the optimization of a cost function,13–18 with
a general cost function typically formulated as depicted
in Equation (1).

Min : C Tð Þ=
XnM
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XnC

j = 1

Cj

Ti

���� s:t : Pf < Pflimit ð1Þ

where C(T) is the total cost function, nM is the total
number of maintenance events, Ti is the time interval,
nC is the total number of actions per maintenance
event, and Cj is the measure of cost per action. Note
that each maintenance event may include more than
one action. The optimization of the cost function C(T)
is pursued with the stipulation that the system’s failure
probability (Pf) is maintained beneath a predetermined
threshold. In the literature, the costs associated with
replacement and preventive maintenance are com-
monly addressed.13,14 It is posited that, at a certain
juncture in the design life, the aggregate cost of
replacement may outweigh the costs incurred from
ongoing, imperfect maintenance at regular intervals.
Consequently, an optimization of the maintenance
interval duration and its corresponding costs becomes
imperative. Diverging from conventional analyses that
predominantly focus on replacement and maintenance
expenses, some scholars, such as Vaurio,15,16 have
devised a cost function that delineates the ratio of cost
components relative to the duration of maintenance
intervals, encompassing accidental and additional
repair costs, alongside preventive maintenance and
testing expenses. Furthermore, research by Ahmadi
et al.17 extends the consideration of cost components
to include inspection, repair, restoration, accidental,
and downtime costs. Uniquely, Nguyen et al.18 evalu-
ate the implications of adopting novel technologies.
They contemplate the scenarios of inaction, preventive
maintenance, or the substitution of deteriorated
machinery with advanced technology, asserting that
such technological advancements are presumed to
enhance production efficacy. The postponement of
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technological upgrades is thus inferred to adversely
affect machine productivity in comparison to the
deployment of newer technologies. Hu and Du19 intro-
duce an evaluation of a lifetime cost optimization
model that integrates physics-based reliability analysis.
In their framework, total costs are categorized into ini-
tial design costs and maintenance costs. Maintenance
costs are further divided into preventive and CM. The
possibility of the system entering preventive or CM is
also considered. Two types of design variables are
examined: the first type includes the dimensions of
components and system configurations, and the second
type pertains to product operations, such as the num-
ber of preventive maintenances. They also consider
warranty and post-warranty periods to better reflect
the real conditions of system design life.

In addition to cost considerations, the optimization
function denoted as Equation (1) also emphasizes the
significance of a reliability constraint function. A
broad range of formulations has been introduced to
accurately encapsulate the uncertainties intrinsic to the
system. The determination of the deterioration state
and its associated probability of failure is critical to
ensure the high quality of the optimization outcomes.
With the increasing adoption of CBM, probabilistic
approaches are frequently employed as a risk threshold
to ascertain the necessity for maintenance interven-
tions. A prevalent method for risk evaluation involves
the application of the Weibull probability density func-
tion (PDF) to compute the likelihood of failure. An
illustrative example of this approach is the methodol-
ogy adopted by the U.S. Army Corps of Engineers
(USACE), which utilizes the hazard rate h(t) to evalu-
ate the degree of hazard risk associated with a compo-
nent, as specified in Equation (2).20 This method
facilitates a comprehensive risk assessment, enabling
the identification and prioritization of maintenance
actions based on the probabilistic risk of component
failure, as shown below.

h tð Þ= K1K2K3

f tð Þ
1� F tð Þ = K1K2K33b

tdð Þb�1

ab
ð2Þ

where f(t) and F(t) is the PDF and the cumulative den-
sity function (CDF) of Weibull distribution, respec-
tively. The Weibull distribution, characterized by its
scale parameters, is employed for the PDF, in which a

and b are the scale and shape parameters, respectively.
K1, K2, and K3 are factors related to the environment,
demand of components, and temperature effect,
respectively.

Additionally, the variable d, representing the ratio
of operating time to total time, is used to account for
the dormancy effect on the system’s reliability.
Maintenance optimization studies frequently leverage

the Weibull failure probability and its variants as a
probabilistic constraint to model the deterioration pro-
cess and failure likelihood of systems.21,22 Such studies
often segment the design life of a machine system into
discrete states, each representing a specific level of sys-
tem deterioration and associated failure probability.
Transition probability methods, including Markov
chains and their variants, are commonly utilized to
simulate these deterioration states, offering a systema-
tic approach to model the progression of wear and tear
in systems. This probabilistic modeling extends beyond
machinery, with applications in structural and bridge
systems where deterioration rates are similarly segmen-
ted into various states by researchers.23,24 For instance,
Sobanjo23 defines four different condition scores (CSs)
for bridges based on deterioration levels, employing
the Weibull PDF to estimate the sojourn time probabil-
ities across these states. This methodology enables the
determination of transition probabilities between
states, informing the optimization of maintenance
intervals and risk assessments. Moreover, studies have
incorporated semi-Markov processes as a probability
constraint for maintenance optimization, demonstrat-
ing its utility in applications such as the determination
of optimal maintenance intervals, where different states
of deterioration are identified and analyzed.25,26 In the
work by Kalantarnia et al.,27 the system is divided into
six states of deterioration, with the failure probability
of each state calculated and used as a constraint in the
optimization process. To enhance the accuracy and
relevance of these models, some studies also apply
Bayesian methods to update the Weibull parameters,
allowing for the predictive model to be refined as new
assessment information becomes available. This
approach ensures that the optimization of maintenance
schedules and risk assessments remains aligned with
the most current understanding of the system’s condi-
tion and performance.28,29 Vega et al.30 conducted two
types (static and dynamic) of optimal maintenance
decisions for miter gates, in which semi-Markov transi-
tion probability was employed to define six distinct
condition states. Notably, a strain measurement device
is affixed to the miter gate to gather strain data for
developing a numerical simulation model. This model
is then used to estimate the damage state, and Bayesian
methods are applied to update the condition rating.

Although numerous studies utilize semi-Markov
processes to compute transition probability matrices,
their application within the context of Tainter gate sys-
tems has not been documented at the time of writing
this publication. For instance, a search in the Web of
Science database for literature combining ‘‘hydraulic
gate’’ and ‘‘semi-Markov’’ yields no results. Expanding
the search criteria to include ‘‘hydraulic gate’’ and
‘‘Markov’’ results in only four publications.31–34 These
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studies incorporate the concept of Markov chains, yet
do not employ semi-Markov processes to calculate
time-varying transition probability matrices. The inno-
vation of this study lies not only in the introduction of
semi-Markov processes but also in the integration of
these processes with the Weibull distribution to calcu-
late failure probabilities, where the Weibull distribu-
tion is derived from Bayesian updating. The updating
process utilizes first-order reliability analysis (FORM)
to compute component probabilities. While these ana-
lytical tools are frequently used by researchers, their
integration into a comprehensive framework specifi-
cally applied to Tainter gates is non-existent.

Many researchers, as previously mentioned, have
proposed maintenance strategies that optimize costs
while ensuring reliability. These studies each focus on
distinct aspects, presenting varying analytical frame-
works. For instance, some research primarily focuses
on systems where operational periods far exceed dor-
mancy periods, which are not applicable to Tainter
gate systems. For systems that are in a prolonged dor-
mant state, many studies integrate optimization with
reliability calculations, considering the impact of sys-
tem degradation on system performance. For example,
Hu and Du19 uses FORM to analyze component and
system reliability, employing their own sampling
approach to convert time-dependent reliability analysis
into a time-invariant format. Meanwhile, Vega et al.30

combine Bayesian theory with finite-element models
and operational condition assessment to derive
Markov transition probabilities, thus calculating time-
dependent reliability under different states.

This study closely aligns with Vega’s approach30 but
has several distinctions. Both our study and Vega’s
employ Weibull distributions for time-dependent relia-
bility analysis, differing from Hu’s approach.19

Although our study also uses FORM, it is merely a
process to update Weibull parameters. While both our
study and Vega use Bayesian theory, Vega et al.30

update the error ratio to obtain Markov transition

probabilities, whereas our application of Bayesian the-
ory updates Weibull parameters. A novel aspect of our
study is the introduction of semi-Markov processes to
compute time-varying Markov transition probabilities,
providing a more systematic calculation of state
changes over time. Additionally, for the Tainter gate
system, this study proposes a new optimized mainte-
nance schedule that considers long dormancy periods.
It meticulously distinguishes between two types of fail-
ures and outlines distinct solutions for each, emphasiz-
ing the importance of differentiating maintenance
types.

The structure of this article is outlined as follows:
section ‘‘Problem definition and research objective’’
elaborates on the problem definition and objectives of
this study. Section ‘‘Methodology’’ describes the meth-
ods used to calculate the CDF for the two limit state
functions discussed. Section ‘‘Numerical simulation of
Tainter gate’’ presents a numerical example to demon-
strate the effectiveness of the proposed framework.
Finally, Section ‘‘Conclusion’’ offers a brief conclusion
of the study.

Problem definition and research objective

Every system has unique characteristics, which make
certain maintenance policies more suitable. For
instance, implementing a CM policy on a Tainter gate
system may not be an effective strategy, as the system
cannot afford to fail even once. The failure at Folsom
Dam illustrates this point well. Additionally, many
Tainter gates are designed to endure long periods of
dormancy, typically becoming operational only during
the rainy season. This study puts focus on a gate sys-
tem with three states: dormancy (Phase 0), activation
(Phase 1), and operation (Phase 2), as illustrated in
Figure 1. Authors observed that a long dormancy sys-
tem commonly will have two governing types of fail-
ure. As mentioned earlier, two types of failure limit
states considered here are general and latent failure

Figure 1. Limit states considered in this study.
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limit states. The general limit state defined as the fail-
ure relates to durability and operational limit states.
The former focuses on the deterioration of materials or
components over time due to environmental exposure,
wear and tear, or other factors that reduce the lifespan
of the gate system. The latter concerns the operational
performance and reliability of gate system, where the
limit is reached when the system can no longer perform
its intended function efficiently or safely. The latent
limit state considers the failure probability during
activation.

This study assumes that systems initiate from Phase
0 (dormancy), where a prolonged period of inactivity
introduces a failure probability preventing entry into
Phase 1 (activation). In the context of Tainter gates or
spillways, such failures might arise from electrical cir-
cuit issues, lubrication deficiencies, or other latent
defects hindering activation. This type of failure is
defined as latent failure limit state. Upon successful
machine activation, it is then subjected to operational
demand loads. This research consolidates Phases 0 and
2, essentially categorizing limit state functions into two
main periods: activation and non-activation. The ratio-
nale for merging Phases 0 and 2 stems from previous
studies, such as those by the USACE,20 which have suc-
cessfully integrated these limit states. Practical observa-
tions have shown that field engineers are particularly
concerned with the failure probabilities during the acti-
vation phase, hence the introduction of a specific latent
limit state to address this concern.

This study aims to develop a framework that pre-
vents excessive or insufficient maintenance for systems
with prolonged dormancy periods. It differentiates
maintenance into two categories: Type I, which
includes cleaning, repairing, updating, and replacing
parts, and Type II, which focuses on inspection.
According to practical operations, reservoir manage-
ment units operate the Tainter gates several times each
year, even in the absence of flooding (when there is no
actual operational need), to ensure smooth function-
ing. This process of operation is referred to as inspec-
tion maintenance, or Type II maintenance, in this
article. Mathematically, Type I maintenance is posited
to extend the expected life of the machinery, whereas
Type II maintenance serves to assess the health condi-
tion of the system through methods like sensor moni-
toring or visual inspections, indicating the machine’s
deterioration state. Given the brief nature of the acti-
vation period, it is impractical to conduct Type I main-
tenance during activation. This study simplifies,
without losing representativeness, by assuming that
Type I maintenance enhances reliability against failures
associated the general limit state, while Type II mainte-
nance has impact on the probability of latent failures
during activation. Moreover, Type I maintenance

influences reliability during dormant and operational
periods, a factor incorporated through the proposed
Bayesian–Weibull first-order reliability method (BW-
FORM), with details provided in the Methodology sec-
tion. Another assumption is that a Tainter gate system
experiences four different CS (for details, refer to
Table 1) throughout its design life. Semi-Markov pro-
cesses are utilized to model the transition probabilities
from a healthy CS to lower states. For each CS, gen-
eral (e.g., weariness) and latent failure probabilities are
defined using the Weibull PDF, with general failure
limit state parameters updated via Bayesian methods
based on inspection data. The failure probabilities
derived from general and latent limit states are then
integrated with semi-Markov to assess the system’s
overall/total failure probability.

To optimize the scheduling of Type I and II mainte-
nance, a genetic algorithm (GA) is employed, with the
assumption that Type I maintenance rejuvenates the
machine’s mean life and Type II (inspection) reduces
latent failure risk. The optimization aims to minimize
maintenance costs while ensuring that the probabilities
of general and latent limit states do not exceed a prede-
fined threshold. The outcome is an optimal mainte-
nance schedule within an estimated budget. The cost of
failure is not considered here. Section ‘‘Methodology’’
will detail the proposed methodology, including the
definition and process of generating failure probabil-
ities for general and latent failure limit states.

Methodology

The proposed framework initiates by assessing the CS
number, which symbolizes its health status. Initially, it
constructs the failure probabilities for both general and
latent limit states across CS levels. The general failure
limit state employs the BW-FORM method28,29,35,36

for its probability calculation per CS, whereas the
latent state’s failure probability assumes a Weibull
PDF. Sections ‘‘General limit state using BW-FORM’’

Table 1. Input for BW-FORM.

CS from
inspection

BW-FORM input

Mean capacity
at year 0 (mc0)

Demand
lifespan
(md)

Capacity
cov

Demand
cov

CS 4 100 40.0 1.0 1.0
CS 3 75
CS 2 50
CS 1 25

BW-FORM: Bayesian–Weibull first-order reliability method;

CS: condition score; cov: coefficient of variation.
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and ‘‘Latent failure limit state’’ elaborate on the meth-
odologies for computing these probabilities, respec-
tively. Subsequently, sojourn time data for each CS
inform the second phase, utilizing a semi-Markov pro-
cess to translate these data into CS transition probabil-
ities. As depicted in Figure 2, latent failure CDF
requires inputs of Weibull parameters (as and bs),
which are derived from an updated Weibull distribu-
tion via BW-FORM. This creates an interaction
between the general and latent limit states. Similarly,
fitting sojourn times to a Weibull PDF necessitates
selecting fitting Weibull parameters (as and bs), derived
from an updated Weibull CDF via BW-FORM (sec-
tion ‘‘General limit state using BW-FORM’’). Section
‘‘Semi-Markov process’’ will detail the semi-Markov
formulation. The subsequent stage integrates the fail-
ure probabilities with occurrence probabilities from
semi-Markov, serving as input for GA optimization to
schedule maintenance. This optimization aims to pre-
vent limit state failure probabilities from exceeding
thresholds while minimizing overall costs, detailed in
section ‘‘Optimization of maintenance schedule.’’
Additionally, this section will discuss maintenance’s
impact on reducing failure probabilities.

General limit state using BW-FORM

This study applies the Weibull distribution as the fail-
ure PDF for hydraulic electromechanical components,
commonly used due to its flexibility in modeling life
data. To incorporate the dormant effect, Bayesian
updating is utilized to refine the health status

assessment based on inspection data. This approach
allows for the integration of new information to adjust
the failure probability estimates, thereby providing a
more accurate reflection of the component’s current
condition. The methodology for Bayesian updating in
conjunction with Weibull distribution parameters is
detailed further in this section (Figure 3), highlighting
how inspection data can effectively inform and refine
health status predictions. Bayesian updating has been
extensively utilized in various engineering applica-
tions.28,29 In this study, the results obtained from the
FORM35 are treated as observations to update the
parameters of the Weibull distribution. A similar ana-
lytical framework is presented in the work of Tian
et al.,36 although they employed a response surface
method-based reliability analysis instead of the FORM
used in this study.

Figure 3 shows the general scheme of the proposed
BW-FORM. The step-by-step procedure is described
as follows:

Step 1: Initially, it is posited that the probability of
failure for a specified lifespan (tlife) adheres to a
Weibull PDF, characterized by parameters aw and bw,
as delineated in Equation (3). The parameters aw and
bw are determined through calculations based on the
residual life, which is estimated from historical mainte-
nance records or expert assessments. This estimation
process is considered to reflect the expert judgment
within the framework of Bayesian analysis. The metho-
dology involves initially setting the shape parameter
(bw) to a predefined value, followed by the application
of the maximum likelihood estimation technique to

Figure 2. General scheme of the proposed method.
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ascertain the scale parameter (aw). bw is assumed to
follow uniform distribution with lower and upper
bound of 0.05 and 2, respectively.

fw tlifeð Þ =
bw

aw

tlife

aw

� �bw�1

e�
tlife
awð Þ

bw

: ð3Þ

Step 2: The value of aw in Equation (3) is assumed
to follow inverse gamma distribution as shown in
Equation (4) with mean value equal to obtained aw at
Step 1 and coefficient of variation (cov) = 1.

faw
awð Þ=

ba

G að Þ
1

aw

� �a + 1

e
b

awð Þ: ð4Þ

Step 3: The failure probability is derived from the
CS value using the FORM, as depicted in Equation
(5). This equation incorporates mc and md as the mean
values, and sc and sd as the standard deviations, of
the system’s capacity and demand over its lifespan,
respectively. bFORM value of 0.5 is postulated to deline-
ate the threshold of failure. Furthermore, it is hypothe-
sized that the expected lifespan deteriorates over time,
with the level of degradation articulated in Equation
(6). The expected design life at year 0, denoted as mc0,
is established based on the CS level. It is critical to
acknowledge that FORM analysis extends from year
t = 0 up to the year when bFORM reaches 0.5, which is
then designated as the year of failure (tfail). The desig-
nation of b = 0.5 as the point of failure is primarily
based on standards set by the USACE,37 where
b = 1.0 is defined as hazardous. Since the failure
probability at the time of destruction should be higher
(implying a smaller b), this study extends this concept
by setting b = 0.5 as the point of failure.

bFORM =
mc � mdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
c + s2

d

q ð5Þ

mc = mc0 � ð100e 40�2tlifeð Þ�0:05

+ 15Þ: ð6Þ

Step 4: The failure year derived via FORM is
employed to ascertain the corresponding aw, with the
assumption that this failure year serves as the new
mean life while retaining the previously determined bw.
This process facilitates the calculation of a correspond-
ing aw, henceforth referred to as caw.

Step 5: Revise the inverse gamma parameter. Given
that aw is assumed to be an inverse gamma random
variable in Step 2, the posterior distribution of aw is
delineated in Equation (7).

f awjcawð Þ=
f cawjaw,bwð Þf awð ÞÐ

f cawjaw,bwð Þf awð Þdaw

f awjcawð Þ=

bw

aw

caw

aw

� �bw�1

e�
caw
awð Þ

bw

� 	
ba

G að Þ
1

aw

� �a + 1

e
b

awð Þ
� 	

Ð
bw

aw

caw

aw

� �bw�1

e�
caw
awð Þ

bw

� 	
ba

G að Þ
1

aw

� �a + 1

e
b

awð Þ
� 	

daw

ð7Þ

â = a + n

b̂ = b +
Xn

i = 1

caw
b

ð8Þ

where posterior parameter of aw remains characterized
as an inverse gamma random variable; the updated
inverse gamma parameter can be obtained using
Equation (8), which is formulated based on the
Bayesian approach. This equation utilizes the updated
failure probability calculated in the previous step to
determine the updated parameter. a and â are the prior

Figure 3. General scheme of the proposed BW-FORM.
BW-FORM: Bayesian–Weibull first-order reliability method.
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and posterior shape parameters of the inverse gamma
random variable, respectively. b and b̂ are the prior
and posterior scale parameters of the inverse gamma
random variable, respectively. n is the number of
observed values and caw is the observed value. More
specifically, ‘‘n’’ represents the number of times FORM
is executed, and ‘‘caw’’ is the calculated ‘‘a’’ value
based on the CS and FORM.

Step 6: Upon obtaining the necessary parameters, â

and b̂, the updated aw can be computed, given the prior
assumption that aw represents the mean value of the
inverse gamma distribution parameters (â and b̂). As
delineated from Steps 1–5, this computation is executed
across various values of bw, indicating the existence of
a set of updated aw (âw). The posterior Weibull CDF
is generated using values of âw and bw, as illustrated in
Equation (9). It is seen that the probability at fail year
P âw,bwð Þð Þ, computed in Step 3, is utilized as a weight-
ing factor. Formulation of P âw,bwð Þ is shown in
Equation (10).

Fw tð Þ=

P
âw,bw

1� e�
t

âwð Þ
bw

� �
P âw,bwð Þ

P
âw,bw

P âw,bwð Þ ð9Þ

P âw,bwð Þ = 1� abs 1� e�
tfail
âwð Þ

bw
� 	

� 0:632

� �
: ð10Þ

As illustrated in Figure 2, the scale and shape para-
meters derived from Equation (9) will be employed in
the calculation of the latent failure probability in sec-
tion ‘‘Latent failure limit state’’ and the semi-Markov
transition probability in section ‘‘Semi-Markov pro-
cess.’’ Note that Equation (9) represents a set of
Weibull distributions, not a single Weibull distribution.
For clarity and simplicity in expressing the trends
between general and latent limit states, subsequent sec-
tions of this paper will approximate Equation (9) using
a single Weibull distribution.

Latent failure limit state

The concept of a latent failure limit state encompasses
hidden failures or undetected errors that result in the
failure to activate a system. It is crucial to accurately
differentiate between failures caused by wear and aging
and those attributed to latent failure. Failures stem-
ming from diminished performance due to component
aging are classified within this study as general failure
limit state. Conversely, issues arising from inadequate
inspection, such as mismanagement in electrical circui-
try or insufficient lubrication changes leading to activa-
tion failures despite the system’s design life still being
within its productive years, can often be mitigated

through optimally scheduled inspections. For the pur-
poses of this research, a straightforward methodology
is employed to model the latent failure limit state.
Similar to the approach outlined in section ‘‘General
limit state using BW-FORM,’’ the failure probability is
formulated for each CS and then integrated with semi-
Markov transition probabilities. The latent failure limit
state is postulated to adhere to a Weibull CDF, as indi-
cated in Equation (11). The Weibull PDF is widely uti-
lized in reliability analysis due to its flexibility, enabling
effective modeling of various life data types. This study
adopts it for the latent limit state, establishing Weibull
parameters based on results from the general limit
state. That is, there is a measurable relative relationship
in risk between the two limit states. The correlation in
risk is established via the scale parameter (al) for latent
failures as outlined in Equation (11). As shown, the
scale parameter (al) for latent failures is calculated as a
function of the general limit state’s scale parameter (as)
from the BW-FORM, adjusted by the risk ratio (nl).
When nl = 1, it signifies that the CDFs for both gen-
eral and latent failures are almost identical. In contrast,
a higher nl value indicates a comparatively greater risk
of latent failures. The shape parameter (bl) is deter-
mined based on expert judgment, with higher values
assigned to systems with greater uncertainty, and lower
values to those with less. In the numerical example,
varying values of nl are employed to compare and
demonstrate their impact between the general and
latent limit states.

Fl tð Þ= 1� e
� t

al

� �bl

al =
as

nl
: ð11Þ

Semi-Markov process

Multiple methodologies for computing the semi-
Markov transition probability are documented in the
literature.38,39 This research adopts the approach uti-
lized in Sobanjo’s study,23 where the semi-Markov
transition probability is formulated as presented in
Equation (12).

Pij t, t0ð Þ= dijSi t, t0ð Þ+
X

k

pd
ik t0ð Þ

ðt

0

fik x, t0ð ÞPkj t � xð Þdx

2
4

3
5

ð12Þ

Pkj tð Þ= dkjSk t, t0ð Þ+
X

r

pd
kr tð Þ

ðt

0

fkr xð ÞPrj t � xð Þdx

2
4

3
5

ð13Þ
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Si tð Þ= 1�
ðt

0

fi tð Þdx ð14Þ

where Pij t, t0ð Þ denotes the transition probability from
state i to j, given that the system has already spent t0
time in state i prior to transitioning. The Kronecker
delta constant, dij, is introduced (where dij = 1 if i = j
and dij = 0 otherwise) to eliminate the equation of
dijSi t, t0ð Þ during transitions. dijSi t, t0ð Þ is specifically
reserved for scenarios where the system remains in its
current state. pd

ik t0ð Þ is the PDF of the system moving
from the current state at time t0, and fik x, t0ð Þ denotes
the PDF of the system transitioning from state i given
that it has spent x time in state i. Pkj t � xð Þ symbolizes
the transition probability from state k to state j during
the remaining time (t – x). Equation (13) further elabo-
rates Pkj t � xð Þ in cases where there is an intermediary
state between states k and j. Similar to Equation (12),
dkj is the Kronecker delta constant, Sk t, t0ð Þ represents
the probability of the system remaining in state k, pd

kr tð Þ
is the PDF of the system moving from the current state
at time t, fkr xð Þ is the PDF of the system transitioning
from state k given it has spent x time in state k, and
Prj t � xð Þ indicates the transition probability from state
r to state j during the remaining time (t – x). The prob-
ability of the system remaining in its current state is
defined in Equation (14), where fi tð Þ represents the
PDF of the system transitioning from state i.

Equations (12) and (13) illustrate that the computa-
tion of semi-Markov transition probabilities involves a
repetitive process across multiple states, lacking a
closed-form solution when employing a Weibull PDF.
Consequently, this research aligns with the assump-
tions made in several references,40,41 converting
Equations (12) and (13) into a discrete format. This
conversion is predicated on the premise that the prob-
ability of transitioning to more than one lower state
simultaneously is negligibly small and thus can be dis-
regarded. Equations (15) and (16) delineate the discrete
methodology utilized in this study for calculating the
transition probabilities to either a lower state or to
remain in the current state. Within section ‘‘General
limit state using BW-FORM,’’ an inverse calculation
procedure is employed to determine the Weibull para-
meters for each CS level, which are subsequently
applied within Equations (15) and (16).

Pii tð Þ= Si tð Þ= 1�
ðt

0

fi tð Þdx ð15Þ

Pij tð Þ=
X

k

Xt

x = 1

fik xð ÞFkj t � xð Þ

 �

ð16Þ

Optimization of maintenance schedule

The CDFs derived in Equations (10) and (11) are inte-
grated with the semi-Markov transition probabilities
determined in section ‘‘Semi-Markov process,’’ as illu-
strated in Equations (17) and (18). The CDFs in
Equations (17) and (18) encapsulate the overall failure
probability for both general and latent limit states,
incorporating the occurrence probability of each CS
and the corresponding failure probability for each CS.
Figure 4 elucidates the maintenance procedures. It
depicts the failure CDF of the system attributable to
general, Fw(t), and latent failures, Fl(t), as calculated in
Equation (17) or Equation (18). These are plotted
against two types of x-axes: the first x-axis represents
the expected system life in years, denoted by the lower-
case t, and the second x-axis signifies the actual life in
years, denoted by the uppercase T. This dual-axis rep-
resentation facilitates a comprehensive understanding
of the system’s maintenance schedule and its impact on
mitigating failure risks.

Fw�total tð Þ=
X4

CS= 1

Fw tjCSð Þ3P4�CS tð Þ ð17Þ

Fl�total tð Þ=
X4

CS= 1

Fl tjCSð Þ3P4�CS tð Þ: ð18Þ

Without maintenance Type I or II, the system’s age
matches the actual year. Maintenance Type I rejuve-
nates the system’s age. As depicted in Figure 4, imple-
menting maintenance Type I at TM2, reduces the
expected system age to tM1, lowering the failure CDF
accordingly. This principle also applies to subsequent
maintenance at TM4, allowing the system’s age to revert
to tM2. Figure 4 shows that without maintenance Type
I or II, Fw(t) or Fl(t) approaches the failure threshold
(Fw limit and Fl limit). Maintenance is scheduled when T
reaches r 3 Tf, where T is the actual year, Tf is the year
failure thresholds are met, and r is a ratio within 0 and
1. The initial maintenance Type I or II is planned for
TM2 (or TI2), equating to rM1 3 TMf1. This necessitates
predefining two sets of ratios, rM = [rM1, rM2, ., rMn]
for maintenance Type I and rI = [rn1, rn2, ., rnI] for
Type II, with nM and nI indicating the counts of each
maintenance type. Importantly, maintenance Type I
mandates concurrent Type II to ensure the system’s
operational integrity. The total cost function is then
derived using Equation (19).

C Tð Þ=
XnM

i = 1

XnI

j = 1

Ci 1 + fð ÞTi + Cj 1 + fð ÞTj

h i
ð19Þ

Ci and Cj represent the costs associated with mainte-
nance Types I and II, respectively, with the inflation
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rate accounted for to reflect cost escalation over time.
The cost components Ci and Cj can be defined in mon-
etary or normalized units. For simplicity in the numeri-
cal example in section ‘‘Numerical simulation of
Tainter gate,’’ this study uses normalized cost values.
GA42 is employed to minimize Equation (19). This
study does not focus extensively on the optimization
tool used. The choice of GA is due to its suitability for
ordering optimization tasks, where it is often recog-
nized for its effectiveness. However, it is important to
acknowledge that using GA does not ensure the most
efficient or optimal results. Any method that fits the
proposed framework and meets user preferences can
be considered appropriate. In addition to optimizing
the maintenance schedule, the GA evaluates various
strategies for maintenance Types I and II, indicated as
Mtype and Itype. The optimization parameters include
rM, rI, Mtype, and Itype, encompassing both the timing

and the strategies of maintenance. rM is the ratio of
maintenance time to failure time, ranging between 0
and 1. rM = 0 means that immediately after a mainte-
nance event, another maintenance is performed.
Conversely, rM = 1 means that maintenance is per-
formed exactly when the system reaches the failure
probability limit. For example, if the failure time is
10 years and rM = 0.1, then Type I maintenance is
performed in the first year. Since rM is an optimized
design variable, one can determine the optimal mainte-
nance timing through rM. The same explanation
applies to rI as well. For the GA optimization, a com-
monly adopted method is used, featuring two one-
point crossovers. For the selection of parental chromo-
somes, a roulette wheel method is employed. Section
‘‘Numerical simulation of Tainter gate’’ will provide a
numerical example to illustrate the application of this
framework.

Figure 4. Effect demonstration of maintenance Type I and Type II.
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Numerical simulation of Tainter gate

To validate the proposed framework, a numerical
example is detailed in this section. Given the novelty of
the semi-Markov approach and the concepts of general
and latent limit states in Taiwan, simulating based on
historical data poses a challenge due to the require-
ment for extensive infrastructure performance records.
Therefore, this study employs a hypothetical scenario
with plausible assumptions for demonstration.
Specifically, a Tainter gate infrastructure with a
designed lifespan of 40 years is selected for numerical
simulation. Sections ‘‘System general limit state’’ and
‘‘System latent failure limit state’’ discuss the general
and latent limit states of the system, respectively, with
section ‘‘System general limit state’’ also elaborating
on the construction of semi-Markov transition prob-
abilities. Section ‘‘Optimization and discussion of
maintenance scheduling’’ illustrates the application of
metaheuristic optimization via GA to ascertain mainte-
nance timings and strategies.

System general limit state

As outlined in section ‘‘Problem definition and
research objective,’’ this study distinguishes between
system failures caused by aging/wear and latent fail-
ures. The reliability assessment for wear-related fail-
ures does not consider latent failures, assuming the
system will activate successfully when needed. This sec-
tion defines the wear-related failure probability for
each CS. Assumptions regarding the lifespan capacity
and demand for each CS are summarized in Table 1.
For evaluating the general limit state, the BW-FORM
method introduced in section ‘‘Latent failure limit
state’’ is applied. By integrating Equations (3) to (10)
with the assumptions in Table 1, the failure probability
for each CS is calculated, as depicted in Figure 5. The
FORM calculation necessitates the input of the mean
remaining life of the system (mc0), with a cov of 1.0
applied to both demand and capacity.

The system is projected to have a 40-year demand
lifespan per CS. Annual capacity degradation is

determined by Equation (6), as depicted in Figure 5(a),
with the rate of mean capacity deterioration accelerat-
ing over time. Bayesian updated Weibull distributions
for the designated CSs are illustrated in Figure 5(b).
The aggregate failure probability, shown in Figure
8(a), is calculated by multiplying the Semi-Markov
transition probabilities (detailed in Figure 7) with the
Weibull failure probabilities from Figure 5(b).
Furthermore, the results of the scale (as) and shape

Table 2. Weibull parameters for latent failure for each CS.

CS from inspection Statistical parameters

Scale (al) Shape (bl)

CS 4 18.7 4.0
CS 3 15.4 4.5
CS 2 11.8 4.5
CS 1 10.6 5.0

CS: condition score.

Table 3. Weibull parameters for Sojourn time on each CS.

Deterioration Parameters derived
from current example

Parameters for
ideal conditions

Scale (as) Shape (bs) Scale Shape

CS 4 37.5 1.4 2.0 2.0
CS 3 30.9 1.2 4.0 1.5
CS 2 23.7 0.9 8.0 3.0
CS 1 21.2 0.8 6.0 3.0

CS: condition score.

Figure 5. Construction of general failure probability using
BW-FORM. (a) Mean remaining life (mc) at each year.
(b) Weibull CDF failure probability computed from BW-FORM.
BW-FORM: Bayesian–Weibull first-order reliability method;

CDF: cumulative density function.
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(bs) parameters presented in Figure 5(b) will be utilized
in the calculation of the latent failure probability CDF
in section ‘‘System latent failure limit state’’ and the
semi-Markov transition probability in section ‘‘Semi-
Markov transition probability.’’

System latent failure limit state

Mirroring section ‘‘System general limit state’’
approach to general failure limit state, the latent failure
limit state also accounts for the occurrence conditions
of four distinct CSs. For each CS, failure probability is
modeled using the Weibull distribution, with para-
meters for latent failure assumptions detailed in Table
2 and Figure 6. The scale parameter (al) is derived
from the general limit state scale parameter (as), as
formulated in Equation (11), with an assumption that
nl = 4. Meanwhile, the shape parameter is assigned
based on reasonable assumptions. As shown in
Figure 6, lower CS values correspond to increased

latent failure probabilities. These probabilities are then
combined with semi-Markov transition probabilities to
calculate the total/overall failure probability (Figure 8(b)).

Figure 6. Construction of system latent failure probability
using Weibull for each CS.
CS: condition score.

Figure 7. Transition probability from CS 1 to other CSs: (a) transition probability calculated using values from this example and
(b) hypothetically derived ideal transition probability.
CS: condition score.

2042 Structural Health Monitoring 24(4)



Semi-Markov transition probability

This research posits that system deterioration is contin-
gent on CS values throughout its lifespan. The distri-
bution of each CS’s sojourn time is presumed to follow
a Weibull distribution, characterized by scale (as) and
shape (bs) parameters specified in Table 3, derived
from inverse calculations of Figure 5(b). Employing
Equations (15) and (16) with as and bs allows for the
construction of semi-Markov transition probabilities
annually. Figure 7(a) illustrates the yearly distribution

of transition probabilities. Initially, the Tainter gate
system is certain (probability of 1.0) to be at CS 4. As
time advances, the likelihood of remaining in CS 4
diminishes, with a concurrent rise in the transition
probabilities to other CS levels. The shift toward CS 1
begins around year 5, under the assumption of no
maintenance during the system’s lifespan. Note that
Figure 7(a) is based on the numerical values specific to
this study; for a clearer understanding of the annual
trend in transition probability distribution, Figure 7(b)
calculates outcomes using hypothetical numbers (Table
3). Figure 7(b) offers a clearer view of the semi-
Markov mechanism, maintaining the same trend as
seen in Figure 7(a).

Figure 8(a) illustrates the cumulative failure prob-
ability resulting from integrating semi-Markov and
BW-FORM for each CS, which will be applied in GA
optimization in Section ‘‘Optimization and discussion
of maintenance scheduling.’’ Without maintenance, the
total failure probability escalates, as demonstrated in
Figure 8(a). However, performing maintenance Type I
can reduce this probability significantly, effectively
‘‘rejuvenating’’ the system by a number of years
depending on the maintenance conducted, as shown in
Figure 4. Figure 8(b) presents the overall failure prob-
ability attributable to latent failures, considering all
CSs, which increases over time. Yet, implementing
maintenance Type II (e.g., inspection) can decrease this
latent failure probability to a lower level, contingent
upon the type of inspection conducted. The optimiza-
tion of maintenance type and timing will be conducted
using GA metaheuristic optimization in Section
‘‘Optimization and discussion of maintenance
scheduling.’’

Optimization and discussion of maintenance
scheduling

As previously mentioned, maintenance Type I targets
weariness failure by altering or rejuvenating parts of
the system, whereas Type II addresses latent failures.
Consequently, optimization of maintenance scheduling

Figure 8. Construction of general and latent total failure
probability. (a) Total failure probability from BW-FORM and
Semi-Markov across CSs. (b) Total latent failure probability
across CSs.
CS: condition score.

Table 4. Maintenance parameters.

Maintenance Type I Maintenance Type II

Type Effectiveness Cost Type Effectiveness Cost

1-1 0.95 1 2-1 0.95 1
1-2 0.85 2.5 2-2 0.85 2.5
1-3 0.75 3.5 2-3 0.75 3.5

Table 5. GA optimization description.

Description

Objective Minimized Equation (19) cost function
Constraint - General failure limit \0.15

- Latent failure limit \0.15
- Concurrent execution of maintenance
Types I and II

Design parameters Mtype, Itype, rM, rI

GA: genetic algorithm.
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involves two distinct failure limit states, yet includes
interactions between them. Type I maintenance is
scheduled to prevent weariness failure probabilities in
Figure 8(a) from exceeding specific thresholds.
Similarly, Type II aims to keep failure probabilities in
Figure 8(b) below predetermined limits. Effectiveness
and cost are predefined for optimization. The goal,
using GA, is to minimize the cost function outlined in
Equation (19) (section ‘‘Methodology’’), with mainte-
nance costs and effectiveness detailed in Table 4.
Effectiveness implies rejuvenation of the system to a
‘‘younger’’ state by a certain factor, based on assump-
tions in this study, though real-world data should ide-
ally be experience-based. A lower effectiveness value
indicates a younger state after maintenance. The opti-
mization incorporates three constraints (Table 5): two
relate to failure probability thresholds for both failure
limit states, and the third ensures inspections follow
any maintenance, as per common practice. The optimi-
zation adjusts Mtype, Itype, rM, rI to minimize costs,
assuming a 5% annual inflation rate for all cost com-
ponents. GA optimization uses a standard approach
with 200 chromosomes and 1000 iterations, employing
a roulette wheel selection and single-point crossover
for generating successive generations.

Figure 9 illustrates the results obtained from GA
optimization. Figure 9(a) illustrates the cost function’s
convergence history. Figure 9(b) and (c) details the
total failure probabilities for general and latent failure
limit states, respectively. Maintenance reduces failure
probabilities based on the type, as depicted in Figure
9(b) and (c). Figure 9 suggests the general limit state
predominantly dictates system failure, frequently reach-
ing the failure threshold. In this simulation, optimal
maintenance is initiated around year 7 of operation,
with a preference for a mix of maintenance Types 1-1,
1-2, and 1-3 for cost optimization.

Further analysis of Figure 9(b) reveals the recom-
mended maintenance sequence as Types 1-1, 1-2, and
1-3, followed by a specific pattern, indicating Type 1-3,
recognized as a larger scale maintenance operation
according to Table 4’s effectiveness, is scheduled for
years 9.3, 11.8, 12.5, 13.2, 14.2, 16.2, 17.7, 19.5, 20.4,
23, 23.5, 25.7, 28.2, 30.7, 31.0, 33.5, 35.1, and 36.8 with
intervals of 9.3, 2.5, 0.7, 0.7, 1, 2, 1.5, 1.8, 0.9, 2.6, 0.5,
2.2, 2.5, 2.5, 0.3, 2.5, 1.6, 1.7, and 3.2 years, respec-
tively. Initially, extensive maintenance is not required,
but the need for type 1-3 interventions grows over time.
Although the numbers may not perfectly reflect this
trend due to the effectiveness and cost parameters in
Table 4 and the randomness in GA, this observation
still underscores a significant conclusion.

Another critical observation is that while the general
limit state predominates the constraints, by year 26,
the system is primarily constrained by the latent limit

state. This observation highlights an important consid-
eration: as expected, even with perfect execution of
type I maintenance, the Tainter gate may still fail dur-
ing the transition from dormancy to activation, neces-
sitating special attention.

Comparatively, the outcomes from the GA were
compared against scenarios employing singular main-
tenance strategies, specifically maintenance types 1-3,
2-3, 1-2, and 2-2. Analysis revealed that the implemen-
tation of maintenance types 1-3 and 2-3, triggered by
thresholds of general or latent failure probabilities,
incurred a cost function of 341.26 (as depicted in
Figure 10). Conversely, the strategy involving mainte-
nance types 1-2 and 2-2 resulted in a marginally higher
cost function of 391.52, as illustrated in Figure 11. The
cost disparity between these approaches was deemed
negligible.

Three key points emerge from the analysis. First,
despite the minimal cost variance between the two
approaches, a significant difference in the frequency of
maintenance activities was observed. Specifically, Type
3 maintenance was required 13 times over a 40-year
period (Figure 10), whereas Type 2 maintenance was
needed 21 times (Figure 11). This outcome aligns with
expectations, given that Type 3 maintenance is more
comprehensive and in-depth. A closer examination of
the effectiveness and cost metrics in Table 4 reveals
that, although Type 2 and Type 3 do not exhibit a
direct proportional relationship in terms of numerical
values, the optimized frequency of maintenance
demonstrates a doubling effect (21 vs 13), indicating a
nonlinear relationship in the system reliability assess-
ment framework proposed in this study. Second, con-
sistent with previous observations, the system’s
reliability is predominantly influenced by the general
limit state. However, at certain junctures, the latent
limit state becomes the governing factor in system
reliability. Third, under a singular maintenance strat-
egy, while the latent limit state does not dominate, the
failure probability exhibits a monotonic increasing
trend between two maintenance events. Although sin-
gular maintenance strategies are impractical in real-
world applications, these findings reiterate the impor-
tance of paying closer attention to the latent limit state
due to its potential to cause system failure and the
increasing trend of failure probability over time.

The interaction between the two limit states is
another focal point of this study, affecting maintenance
management strategies. Figure 12 illustrates the opti-
mization schedule when the risk ratio (nl) is set to 4. As
anticipated, it demonstrates that the latent limit state
gathers more concern compared to the general limit
state. A comparison between Figures 9 and 12 clearly
reveals that, for maintenance Type II, not only does
the frequency of implementation significantly increase
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(from 19 to 39 times), but the corresponding failure
probabilities also rise and are consistently close to the
preset threshold values (0.15).

This study further inspects the impact of various nl
values on optimization schedule result. Figure 13
shows the optimization schedule when nl = 1, 2, and
4. Similar to earlier analysis, a singular maintenance
strategy using maintenance Type I-3 and maintenance
Type II-3 is performed. Result of general limit state is
same as the one shown in Figure 10(a). While variation

of latent limit state could be seen in Figure 13(a), it is
shown that latent limit states become more concerning
compared to general limit states as nl value gets larger.
This is due to the total latent probability increases as nl
increases, as shown in Figure 13(b). In Figure 13,
maintenance Type I is performed 22 times, while main-
tenance Type II is performed 39 times due to riskier
condition on latent limit state.

This study further examines the effects of various nl
values on the outcomes of optimization schedules.

Figure 9. Summary of GA optimization results. (a) GA optimization convergence history (Best Cost Function = 316). (b) Results
on maintenance Type I scheduling. (c) Results on maintenance Type II scheduling.
GA: genetic algorithm.
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Figure 13 illustrates the optimization schedule for
nl =1, 2, and 4. Consistent with previous analyses, a
single maintenance strategy utilizing maintenance Type
I-3 and maintenance Type II-3 is implemented. The
results for the general limit state remain identical to
those presented in Figure 10(a). However, variations in
the latent limit state are observable in Figure 13(a).
Figure 13(a) demonstrates that as the value of nl
increases, the likelihood of the latent limit state being a
dominant factor in system reliability also rises. When
compared with Figure 11(b), it is evident that for nl =
4, the failure probability of the latent limit state is gen-
erally higher and approaches the predefined threshold
of 0.15. Figure 13(b) presents the total latent failure
probability calculated using a semi-Markov process for
various CS states. This figure clearly illustrates that an
increase in nl value corresponds to a higher probability
of the latent limit state dominating the system’s relia-
bility. In Figure 13, maintenance Type I is conducted
22 times, while maintenance Type II is executed 39
times, reflecting the heightened risk associated with the
latent limit state.

Conclusion

Considering the characteristics of Tainter gates, which
include extended periods of dormancy, a requirement
for high reliability upon activation, and safety during
operation, this study devises a framework specifically
designed to address these issues. For instance, this
research introduces a semi-Markov process, wherein
the duration time spent in any given state can follow a
non-exponential distribution. Subsequently, the
Weibull distribution is applied to depict the deteriora-
tion behavior of Tainter gates within each CS, and the
semi-Markov process is employed to determine the
transition probabilities between CSs. Additionally,
optimization was conducted to determine the optimal
maintenance strategy for the Tainter gate system,
recognizing the potential for latent failure during
extended dormancy periods and the critical require-
ment for the gate to remain in a state of readiness. This
approach includes addressing both general and latent
failure limit states, with maintenance serving as a
mechanism to mitigate failures. By considering four

Figure 10. Type 3 maintenance and inspection strategy only (Cost Function = 341.26): (a) Type 1-3 exclusive maintenance
strategy. (b) Type 2-3 exclusive maintenance strategy.
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levels of CSs and combining failure probabilities for
each limit state with transition probabilities via the
semi-Markov process, a comprehensive failure prob-
ability is derived. GA optimization then identifies the
optimal maintenance schedule to ensure system relia-
bility thresholds are not exceeded. Key findings from
this study include:

1. The general limit state is the primary determinant
of system failure, though the latent limit
state occasionally becomes critical to system
reliability.

2. The requirement for comprehensive maintenance
increases over time, despite initial minimal needs.

3. Even with flawless execution of Type I mainte-
nance, Tainter gates risk failure during the shift
from dormancy to activation, necessitating focused
oversight.

4. The frequency of maintenance is not directly pro-
portional to its effectiveness.

5. The latent limit state warrants special attention due
to its failure potential and the growing probability
of failure over time.

6. By analyzing the interaction between general and
latent limit states, it is evident that inadequate rou-
tine maintenance can cause latent limit states to
become the predominant factors controlling sys-
tem reliability.

Figure 11. Type 2 maintenance and inspection strategy only (Cost Function = 391.52): (a) Type 1-2 exclusive maintenance
strategy. (b) Type 2-2 exclusive maintenance strategy.
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Figure 12. GA optimization results using nl = 4. (a) Results on maintenance Type I scheduling. (b) Results on maintenance Type II
scheduling.
GA: genetic algorithm.
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